
Compact Genetic Algorithm for Active Interval Scheduling
in Hierarchical Sensor Networks

Ming-Hui Jin1, Cheng-Yan Kao4,
Yu-Cheng Huang5

Dep. of Computer Science and
Information Engineering, National
Taiwan University, Taipei, Taiwan

1mhjin@mems.iam.ntu.edu.tw
4cykao@csie.ntu.edu.tw

5r91021@csie.ntu.edu.tw

D. Frank Hsu
Dep. of Computer and
Information Sciences,

Fordham University, LL813,
New York, NY 10023

hsu@trill.cis.fordham.edu

Ren-Guey Lee
Dep. of Electronic

Engineering, National
Taipei University of
Technology, Taipei,

Taiwan
evans@ntut.edu.tw

Chih-Kung Lee
Inst. of Applied

Mechanics, National
Taiwan University, Taipei,

Taiwan

cklee@mems.iam.ntu.edu.tw

ABSTRACT
This paper introduces a novel scheduling problem called the active
interval scheduling problem in hierarchical wireless sensor networks
for long-term periodical monitoring applications. To improve the
report sensitivity of the hierarchical wireless sensor networks, an
efficient scheduling algorithm is desired. In this paper, we propose a
compact genetic algorithm (CGA) to optimize the solution quality for
sensor network maintenance. The experimental result shows that the
proposed CGA brings better solutions in acceptable calculation time.

Categories & Subject Descriptors: Computer Application
MISCELLANEOUS

General Terms: Algorithm

Keywords: Sensor Network, Active Interval Scheduling Problem

1. NETWORK ARCHITECTURE

Figure 1. The network architecture for sensor networks with

immobile sensors.

Figure 1 shows the network architecture proposed in [1]. In this
architecture, the sensor network is partitioned into several clusters.
Each cluster contains several sensor nodes and a local control center
(LCC). A sensor node has capability to detect and then reports the
detection results to its LCC. The detection results are then routed
back to the sink through the Core Network constructed by only the
LCCs. The sink may communicate with the global control center
(GCC) via Internet or satellite. The sensor nodes are immobile in this
study. In each cluster, the LCC applies the polling protocol to
communicate with all its sensor nodes.

In [1], each cluster is assumed to be active periodically and the entire
clusters apply the same period. The period for all the clusters is said
to be the detection cycle and the length of detection cycle is denoted
as ldc. Each cluster is allowed to be active in the same period in all
the detection cycle, and the period is called the active interval of the
cluster.

2. THE ACTIVE INTERVAL SCHEDULING
PROBLEM

We adopt the following definitions proposed in [1] as following.
D 1: CL = {C1, C2, …, Cn} be the set of all clusters, where n is the

number of cluster nodes in the core network.
D 2: For each 1 ≤ i ≤ n, cluster Ci contains si sensors.
D 3: The active interval of Ci is denoted as (ts(i), te(i)).
D 4: Two clusters Ci and Cj are adjacent if any sensor node in Ci can

receive any broadcasted messages from the LCC of Cj to the
sensor nodes of Cj.

D 5: For two different clusters Ci and Cj, Rij = 1 if Ci and Cj are
adjacent and Rij = 0 otherwise.

D 6: The minimal feasible value of ldc is denoted as ldcmin.
Since ldcmin = min{ te(i) | Ci ∈ CL}, and the network requires adjacent
clusters should not be active simultaneously. Therefore, in [1], the
cost model for ldcmin minimization is stated as follow.
Minimize ldcmin (1)
Subject to

∀ 1 ≤ i ≠ j ≤ n, (ts(i), te(i)) ∩ (ts(j), te(j)) = φ if Rij = 1 (2)
Where

ldcmin = min { ts(i) + si×tr + tc | Ci ∈ CL} (3)

3. THE PROPOSED COMPACT GENETIC
ALGORITHM

The methodology of the algorithm design is to classified all the
clusters into m sets V1, …, Vm. The set Vi is called the ith selection of
the solution. The clusters in the same selection can be active
simultaneously. The active interval of each cluster in the ith selection
is a sub-interval of (ti-1, ti), and hence ldcmin = tm.

Assume that i –1 selections have been determined and there are n(i)
clusters CL(i) = {Cπ(i, 1), …, Cπ (i, n(i))} ⊆ CL which are not classified to
any selection. In this situation, we make the following definitions

D. 6. A chromosome is defined to be a vector of ordered pairs <(u1,
p1), …, (un(i), pn(i))>. For each 1 ≤ j ≤ n(i), uj = 1 implies that the
cluster Cπ(i, j) should be selected in the ith selection and uj = 0
otherwise. Besides, pj is denoted as the possibility of selecting

Copyright is held by the author/owner(s).
GECCO’05, June 25-29, 2005, Washington, DC, USA.
ACM 1-59593-010-8/05/0006.

2205

the cluster Cπ (i, j). And we say that the chromosome selects the
cluster Cπ(i, j) iff uj = 1.

D. 7. For chromosome X = <(u1, p1), …, (un(i), pn(i))>, the vector
<u1, …, un(i)> is called the selection vector of X, the vector
<p1, …, pn(i)> is called the probability vector of X and the set {1
≤ j ≤ n(i)| uj = 1} is called the selected index of X.

D. 8. A chromosome is said to be feasible if, for each two different
clusters Cπ (i, x) and Cπ (i, y) in CL(i), Cπ (i, x) and Cπ (i, y) are
adjacent implies (ux, uy) ≠ (1, 1).

D. 9. A chromosome X is said to be a corrected chromosome of
chromosome Y if X is a feasible and the selected index of X is a
subset of the selected index of Y. Besides, we denote CC(Y) to
be the set of all corrected chromosomes of Y. A correctness
chromosome x of chromosome X is said to be a maximal
correctness chromosome of X if, ∀ x ∈ CC(X), the number of
elements of the selected index of y is greater than or equal to the
number of elements of the selected index of x.

All the chromosomes in the each population are generated by two
steps. First, determines the probability vector. Second, applies the
probability vector to randomly generate the selection vector. That is,
the probability of uj = 1 is pj. All the chromosomes in the initial
generation own the same probability vector <p1, …, pn(i)> with p = pj
for all 1 ≤ j ≤ n(i) . The parameter p is called the initial probability
vector generator (IPVG).

3.1 The Genetic Operators
The competition operator generates two chromosomes called winner
and loser, where the winner is the one with higher fitness. The
competition operator applies the following steps to determine the
winner and loser.

Step 1. Randomly generate a maximal correctness chromosome of
X.

Step 2. Given the condition that the previous i-1 selections have
been determined and all the clusters which are selected by the
maximal correctness chromosome of X have be classified into
the ith selection, apply the Algorithm 1 in [1] to generate an
active interval schedule AISX.

Step 3. Apply Step 1 and Step 2 to generate an AISY for Y
If the cost of AISX is lower than the cost of AISY, then set winner to be
X and then set loser to be Y.

The crossover operator applies the procedures below to generate a
new chromosome from two given chromosomes X and Y.

Step 1. Apply the competition operator to derive the two
chromosomes winner and loser.

Step 2. Let j = 1
Step 3. If j > n(i), terminates this procedure
Step 4. Let Pwin(j) = the probability that the winner selects the

cluster Cπ(i, j), Plose(j) = the probability that the loser selects the
cluster Cπ(i, j), Pmin(j) = min{ Pwin(j), Plose(j)} and Pmax(j) =
max{ Pwin(j), Plose(j)}.

Step 5. If the winner selects the cluster Cπ(i, j), go to step 8.
Step 6. If the loser selects the cluster Cπ(i, j), then set the probability

that the new chromosome will select Cπ(i, j) to be Pmin(j) – 1/S,
where S is the population size. Otherwise, set the probability
that the new chromosome will select to be Pwin(j).

Step 7. j = j+1 and then go to step 3.
Step 8. If the loser selects the cluster Cπ(i, j), then set the probability

that the new chromosome will select Cπ(i, j) to be Pwin(j).

Otherwise, set the probability that the new chromosome will
select to be Pmax(j) + 1/S.

Step 9. j = j+1 and then go to step 3.

3.2 The Proposed Algorithm
The proposed compact genetic algorithm for generating the ith
selection is stated as follow, where G in Step 3 is the maximal
generation of this algorithm.

Step 1. Let g = 1.
Step 2. Randomly generate S chromosomes each one of which has

the same probability p to select all the remaining clusters.
Step 3. If g > G, go to step 8.
Step 4. Let h = 1
Step 5. Randomly selects two chromosomes X and Y generated in

the gth generation, and then applies the crossover operator to
generate a new chromosome in the (g+1)th generation

Step 6. Let h = h+1. If h ≤ S, go to step 5.
Step 7. If there are any chromosomes in the (g+1)th generation

which definitely select or definitely not select a certain cluster,
then let g = g + 1 and then go to step 8. Otherwise, let g = g + 1
and then go to step 3.

Step 8. Apply the Algorithm 1 of [1] to generate an active interval
schedule for each chromosome in the gth generation. Select the
chromosome whose derived active interval schedule has lowest
cost and then terminates this algorithm.

4. EXPERIMENTS AND COMPARISONS
The experiments were performed on an Pentium IV 2.6 GHz PC with
1 GB memory running windows XP operation system. In all the
experiments, the population size S of solving each problem is 100, the
maximal generation of each experiment G is 60000 and the IPVG is
0.5. Five benchmark problems proposed in [1] are examined in the
experiments.

4.1 Experimental Results and Comparisons
Table 1. The experimental results

CGA Problem Algorithm
1 in [1]

Algorithm
2 in [1] Cost CPU time

1 344 328 324 0.37
2 566 548 532 1.54
3 564 557 544 2.79
4 791 773 752 5.59
5 1396 1361 1138 10.29

Table 1 compares the cost of the best solution of problem 1 to
problem 5 derived by the greedy algorithms (Algorithm 1 and
Algorithm 2 in [1]) and the compact genetic algorithm. The CPU
times for generating the best solutions by the greedy algorithms are
not presented in Table 1 since they are too small and hence been
ignored in this table. The unit of the CPU time is 1 second. The
experimental result in Table 1 shows that the CGA can further
improve the solution quality in acceptable calculation time.

5. REFERENCES
[1] Ming-Hui Jin, Yu-Cheng Huang, D. Frank Hsu, Cheng-Yan

Kao, You-Rui Wu, and Chih-Kung Lee, “On Active Interval
Scheduling in Static Sensor Networks”, Proceeding of IASTED
International Conference on Communication System and
Applications, July 2004. pp. 126 – 131.

2206

