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ABSTRACT 
This paper introduces a novel scheduling problem called the active 
interval scheduling problem in hierarchical wireless sensor networks 
for long-term periodical monitoring applications. To improve the 
report sensitivity of the hierarchical wireless sensor networks, an 
efficient scheduling algorithm is desired. In this paper, we propose a 
compact genetic algorithm (CGA) to optimize the solution quality for 
sensor network maintenance. The experimental result shows that the 
proposed CGA brings better solutions in acceptable calculation time.   

Categories & Subject Descriptors: Computer Application  
MISCELLANEOUS 

General Terms: Algorithm 
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1. NETWORK ARCHITECTURE  

 
Figure 1. The network architecture for sensor networks with 

immobile sensors. 

Figure 1 shows the network architecture proposed in [1]. In this 
architecture, the sensor network is partitioned into several clusters. 
Each cluster contains several sensor nodes and a local control center 
(LCC). A sensor node has capability to detect and then reports the 
detection results to its LCC. The detection results are then routed 
back to the sink through the Core Network constructed by only the 
LCCs. The sink may communicate with the global control center 
(GCC) via Internet or satellite. The sensor nodes are immobile in this 
study. In each cluster, the LCC applies the polling protocol to 
communicate with all its sensor nodes.  

In [1], each cluster is assumed to be active periodically and the entire  
clusters apply the same period. The period for all the clusters is said 
to be the detection cycle and the length of detection cycle is denoted 
as ldc. Each cluster is allowed to be active in the same period in all 
the detection cycle, and the period is called the active interval of the 
cluster. 

2. THE ACTIVE INTERVAL SCHEDULING 
PROBLEM  

We adopt the following definitions proposed in [1] as following. 
D 1: CL = {C1, C2, …, Cn} be the set of all clusters, where n is the 

number of cluster nodes in the core network. 
D 2: For each 1 ≤ i ≤ n, cluster Ci contains si sensors. 
D 3: The active interval of Ci is denoted as (ts(i), te(i)). 
D 4: Two clusters Ci and Cj are adjacent if any sensor node in Ci can 

receive any broadcasted messages from the LCC of Cj to the 
sensor nodes of Cj.  

D 5: For two different clusters Ci and Cj, Rij = 1 if Ci and Cj are 
adjacent and Rij = 0 otherwise. 

D 6: The minimal feasible value of ldc is denoted as ldcmin. 
Since ldcmin = min{ te(i) | Ci ∈  CL}, and the network requires adjacent 
clusters should not be active simultaneously. Therefore,  in [1], the 
cost model for ldcmin minimization is stated as follow. 
Minimize ldcmin           (1) 
Subject to 

∀  1 ≤ i ≠ j ≤ n, (ts(i), te(i)) ∩ (ts(j), te(j)) = φ  if Rij = 1       (2) 
Where 

ldcmin = min { ts(i) + si×tr + tc | Ci ∈  CL}              (3) 

3. THE PROPOSED COMPACT GENETIC 
ALGORITHM  

The methodology of the algorithm design is to classified all the 
clusters into m sets V1, …, Vm. The set Vi is called the ith selection of 
the solution. The clusters in the same selection can be active 
simultaneously. The active interval of each cluster in the ith selection 
is a sub-interval of (ti-1, ti), and hence ldcmin = tm. 

Assume that i –1 selections have been determined and there are n(i) 
clusters CL(i) = {Cπ(i, 1), …, Cπ (i, n(i))} ⊆  CL which are not classified to 
any selection. In this situation, we make the following definitions 

D. 6. A chromosome is defined to be a vector of ordered pairs <(u1, 
p1), …, (un(i), pn(i))>. For each 1 ≤ j ≤ n(i), uj = 1 implies that the 
cluster Cπ(i, j) should be selected in the ith selection and uj = 0 
otherwise. Besides, pj is denoted as the possibility of selecting 
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the cluster Cπ (i, j). And we say that the chromosome selects the 
cluster Cπ(i, j) iff uj = 1. 

D. 7. For chromosome X = <(u1, p1), …, (un(i), pn(i))>, the vector 
<u1, …, un(i)> is called the selection vector of X, the vector 
<p1, …, pn(i)> is called the probability vector of X and the set {1 
≤ j ≤ n(i)| uj = 1} is called the selected index of X. 

D. 8. A chromosome is said to be feasible if, for each two different 
clusters Cπ (i, x) and Cπ (i, y) in CL(i), Cπ (i, x) and Cπ (i, y) are 
adjacent implies (ux, uy) ≠ (1, 1).  

D. 9. A chromosome X is said to be a corrected chromosome of 
chromosome Y if X is a feasible and the selected index of X is a 
subset of the selected index of Y. Besides, we denote CC(Y) to 
be the set of all corrected chromosomes of Y. A correctness 
chromosome x of chromosome X is said to be a maximal 
correctness chromosome of X if, ∀  x ∈  CC(X), the number of 
elements of the selected index of y is greater than or equal to the 
number of elements of the selected index of x. 

All the chromosomes in the each population are generated by two 
steps. First, determines the probability vector. Second, applies the 
probability vector to randomly generate the selection vector. That is, 
the probability of uj = 1 is pj. All the chromosomes in the initial 
generation own the same probability vector <p1, …, pn(i)> with p = pj 
for all 1 ≤ j ≤ n(i) . The parameter p is called the initial probability 
vector generator (IPVG). 

3.1 The Genetic Operators 
The competition operator generates two chromosomes called winner 
and loser, where the winner is the one with higher fitness. The 
competition operator applies the following steps to determine the 
winner and loser. 

Step 1. Randomly generate a maximal correctness chromosome of 
X. 

Step 2. Given the condition that the previous i-1 selections have 
been determined and all the clusters which are selected by the 
maximal correctness chromosome of X have be classified into 
the ith selection, apply the Algorithm 1 in [1] to generate an 
active interval schedule AISX. 

Step 3. Apply Step 1 and Step 2 to generate an AISY for Y 
If the cost of AISX is lower than the cost of AISY, then set winner to be 
X and then set loser to be Y. 

The crossover operator applies the procedures below to generate a 
new chromosome from two given chromosomes X and Y. 

Step 1. Apply the competition operator to derive the two 
chromosomes winner and loser. 

Step 2. Let j = 1 
Step 3. If j > n(i), terminates this procedure 
Step 4. Let Pwin(j) = the probability that the winner selects the 

cluster Cπ(i, j), Plose(j) = the probability that the loser selects the 
cluster Cπ(i, j), Pmin(j) = min{ Pwin(j), Plose(j)} and Pmax(j) = 
max{ Pwin(j), Plose(j)}. 

Step 5. If the winner selects the cluster Cπ(i, j), go to step 8.  
Step 6. If the loser selects the cluster Cπ(i, j), then set the probability 

that the new chromosome will select Cπ(i, j) to be Pmin(j) – 1/S, 
where S is the population size. Otherwise, set the probability 
that the new chromosome will select to be Pwin(j). 

Step 7. j = j+1 and then go to step 3. 
Step 8. If the loser selects the cluster Cπ(i, j), then set the probability 

that the new chromosome will select Cπ(i, j) to be Pwin(j). 

Otherwise, set the probability that the new chromosome will 
select to be Pmax(j) + 1/S. 

Step 9. j = j+1 and then go to step 3. 

3.2 The Proposed Algorithm 
The proposed compact genetic algorithm for generating the ith 
selection is stated as follow, where G in Step 3 is the maximal 
generation of this algorithm. 

Step 1. Let g = 1.  
Step 2. Randomly generate S chromosomes each one of which has 

the same probability p to select all the remaining clusters. 
Step 3. If g > G, go to step 8. 
Step 4. Let h = 1 
Step 5. Randomly selects two chromosomes X and Y generated in 

the gth generation, and then applies the crossover operator to 
generate a new chromosome in the (g+1)th generation 

Step 6. Let h = h+1. If h ≤ S, go to step 5. 
Step 7. If there are any chromosomes in the (g+1)th generation 

which definitely select or definitely not select a certain cluster, 
then let g = g + 1 and then go to step 8. Otherwise, let g = g + 1 
and then go to step 3. 

Step 8. Apply the Algorithm 1 of [1] to generate an active interval 
schedule for each chromosome in the gth generation. Select the 
chromosome whose derived active interval schedule has lowest 
cost and then terminates this algorithm. 

4. EXPERIMENTS AND COMPARISONS  
The experiments were performed on an Pentium IV 2.6 GHz PC with 
1 GB memory running windows XP operation system. In all the 
experiments, the population size S of solving each problem is 100, the 
maximal generation of each experiment G is 60000 and the IPVG is 
0.5. Five benchmark problems proposed in [1] are examined in the 
experiments.  

4.1 Experimental Results and Comparisons  
Table 1. The experimental results 

CGA Problem Algorithm 
1 in [1] 

Algorithm 
2 in [1] Cost CPU time 

1 344 328 324 0.37 
2 566 548 532 1.54 
3 564 557 544 2.79 
4 791 773 752 5.59 
5 1396 1361 1138 10.29 

Table 1 compares the cost of the best solution of problem 1 to 
problem 5 derived by the greedy algorithms (Algorithm 1 and 
Algorithm 2 in [1]) and the compact genetic algorithm. The CPU 
times for generating the best solutions by the greedy algorithms are 
not presented in Table 1 since they are too small and hence been 
ignored in this table. The unit of the CPU time is 1 second. The 
experimental result in Table 1 shows that the CGA can further 
improve the solution quality in acceptable calculation time. 
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